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Abstract. The Antarctic Ice Sheet is the largest potential

source of future sea-level rise. Mass loss has been increas-

ing over the last 2 decades for the West Antarctic Ice Sheet

(WAIS) but with significant discrepancies between estimates,

especially for the Antarctic Peninsula. Most of these esti-

mates utilise geophysical models to explicitly correct the ob-

servations for (unobserved) processes. Systematic errors in

these models introduce biases in the results which are dif-

ficult to quantify. In this study, we provide a statistically

rigorous error-bounded trend estimate of ice mass loss over

the WAIS from 2003 to 2009 which is almost entirely data

driven. Using altimetry, gravimetry, and GPS data in a hier-

archical Bayesian framework, we derive spatial fields for ice

mass change, surface mass balance, and glacial isostatic ad-

justment (GIA) without relying explicitly on forward models.

The approach we use separates mass and height change con-

tributions from different processes, reproducing spatial fea-

tures found in, for example, regional climate and GIA for-

ward models, and provides an independent estimate which

can be used to validate and test the models. In addition, spa-

tial error estimates are derived for each field. The mass loss

estimates we obtain are smaller than some recent results, with

a time-averaged mean rate of−76± 15 Gt yr−1 for the WAIS

and Antarctic Peninsula, including the major Antarctic is-

lands. The GIA estimate compares well with results obtained

from recent forward models (IJ05-R2) and inverse methods

(AGE-1). The Bayesian framework is sufficiently flexible

that it can, eventually, be used for the whole of Antarctica,

be adapted for other ice sheets and utilise data from other

sources such as ice cores, accumulation radar data, and other

measurements that contain information about any of the pro-

cesses that are solved for.

1 Introduction

Changes in mass balance of the Antarctic Ice Sheet have

profound implications on sea level. While there is a gen-

eral consensus that West Antarctica has experienced ice loss

over the past 2 decades, the range of mass-balance esti-

mates still differ significantly (compare, for example, esti-

mates in Shepherd et al. (2012), Tables S8 and S11, which

range from −84± 18 for the Gravity Recovery and Climate

Experiment (GRACE) to −13± 39 Gt yr−1 for ICESat for

the West Antarctic Ice Sheet (WAIS) and from −24± 35 to

123± 60 for the East Antarctic Ice Sheet). Reconciling these

disparate estimates is an important problem. Previous stud-

ies have made use of satellite altimetry (Zwally et al., 2005),

satellite gravimetry (Chen et al., 2006; King et al., 2012;

Sasgen et al., 2013; Luthcke et al., 2013), or a combination

of satellite and airborne data and climate model simulations

(Rignot et al., 2011b) to provide estimates. In the latter case,

the balance is found by deducting output ice flux from input

snowfall in a technique sometimes referred to as the input–

output method (IOM) or mass budget method.

Different approaches have different sources of error. A key

error in the gravimetry-based estimates is a result of incom-

plete knowledge on glacial isostatic adjustment (GIA), which

constitutes a significant proportion of the mass-change sig-

nal but leakage and GRACE errors are also important (Hor-
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wath and Dietrich, 2009). For satellite altimetry, uncertain-

ties arise from incomplete knowledge of the temporal vari-

ability in precipitation (Lenaerts et al.,2012; Frezzotti et al.,

2012) and the compaction rates of firn (Arthern et al., 2010;

Ligtenberg et al., 2011), quantities which play a central rôle

in determining the density of the observed volume change.

For the IOM, the main sources of error stem from the sur-

face mass balance (SMB) estimates used (usually obtained

from a regional climate model) and uncertainties in ice dis-

charge across the grounding line. Recent improvements in

regional climate modelling have reduced the uncertainty in

the SMB component but differences between estimates for

the Antarctic Ice Sheet as a whole still exceed recent esti-

mates of its mass imbalance. For example, a recent update

of the commonly used regional climate model, RACMO, has

resulted in a change in the integrated ice-sheet-wide SMB of

about 105 Gt yr−1 (Van Wessem et al., 2014), which is larger

than most recent estimates of the Ice Sheet imbalance. This

change in SMB directly impacts the IOM estimate by the

same amount. It is these hard-to-constrain biases in the for-

ward models, such as the one just described, that has, in part,

motivated our approach.

In an attempt to reduce the dependency on forward mod-

els, recent studies have combined altimetry and GRACE to

obtain a data-driven estimate of GIA and ice loss simulta-

neously (Riva et al., 2009; Gunter et al., 2014). Here, we

extend these earlier approaches in a number of ways. We

provide a model-independent estimate not only of GIA but

also of the SMB variations, firn compaction rates, and the

mass loss/gain due to ice dynamics (henceforward simply re-

ferred to as ice dynamics). In doing so, we eliminate the de-

pendency of the solution on solid-Earth and climate models.

The trends for ice dynamics, SMB, GIA, and firn compaction

are obtained independently through simultaneous inference

in a hierarchical statistical framework (Zammit-Mangion et

al., 2014). The climate and firn compaction forward mod-

els are used solely to provide prior information about the

spatial smoothness of the SMB-related processes. Systematic

biases in the models have, therefore, minimal impact on the

solutions. In addition, we employ GPS bedrock uplift rates

to further constrain the GIA signal. In future work the GPS

data will also be used to constrain localised ice mass trends

that cause an instantaneous elastic response of the lithosphere

(Thomas and King, 2011). The statistical framework uses ex-

pert knowledge about smoothness properties of the different

processes observed (i.e. their spatial and temporal variabil-

ity) and provides statistically sound regional error estimates

that take into account the uncertainties in the different obser-

vation techniques (Zammit-Mangion et al., 2014). The study

reported here was performed as a proof of concept for a time-

evolving version of the framework for the whole Antarctic

Ice Sheet, which is currently under development. The time-

evolving solution will use updated data sets and, as explained

above, will also solve for the elastic signal in the GPS data.

In addition, it will provide improved separation of the pro-

cesses because of the additional information related to tem-

poral smoothness that can be incorporated into the frame-

work (discussed further in Sect. 5).

2 Data

In this section we describe the data employed, which are

divided into two groups. The first group contains observa-

tional data which play a direct rôle in constraining the mass

trend. These include satellite altimetry, satellite gravime-

try, and GPS data (Sects. 2.1–2.3). The second group com-

prises auxiliary data (both observational and information ex-

tracted from geophysical models), which we use to help with

the signal separation (differentiating between the different

processes we solve for accounting for their spatial smooth-

ness) (Zammit-Mangion et al., 2014). These are discussed in

Sect. 2.4.

2.1 Altimetry

We make use of two altimetry data sets in this study, obtained

from the Ice, Cloud and land Elevation Satellite (ICESat) and

the Environment Satellite (Envisat). In this study, we used

ICESat elevation rates (dh/ dt) based on release 33 data from

February 2003 until October 2009 (Zwally et al., 2011). The

data include the “86S” inter-campaign bias correction pre-

sented in Hofton et al. (2013) and the centroid Gaussian cor-

rection (Borsa et al., 2013) made available by the National

Snow and Ice Data Centre. Preprocessing was carried out

as described in Sørensen et al. (2011). Since ICESat tracks

do not precisely overlap, a regression approach was used for

trend extraction, in which both spatial slope (both across-

track and along-track) and temporal slope (dh/ dt) were si-

multaneously estimated (Howat et al., 2008; Moholdt et al.,

2010). A regression was only performed if the area under

consideration, typically 700 m long and a few hundred me-

tres wide, had at least 10 points from four different tracks

that span at least 1 year. Regression was carried out twice,

first to detect outliers (data points which lay outside the 2σ

confidence interval) and second to provide a trend estimate

following outlier omission. The standard error on the regres-

sion coefficient (in this case dh/ dt), SEcoef , was calculated

through

SEcoef =
1

√
n− 2

√ ∑
ie

2
i∑

i(xi − x̄)
2
, (1)

where e = [ei] is the vector of residuals, n is the sample

size, and x = [xi] is the input with mean x (Yan, 2009). It

should be noted that this standard error is not equivalent to

the measurement error but takes into account sample size as

well as the variance of both input data and residuals of the

regression. Only elevation changes with an associated stan-

dard error on dh/ dt of less than 0.40 m yr−1 were consid-

ered. This threshold was selected by trial and error to avoid
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a noisy spatial pattern of points that are close together and

opposite in sign, usually because the regression is based on

a small subset of overpasses. Data above the latitude limit of

86◦ S were omitted. The remaining data were gridded on a

polar-stereographic projection (central latitude 71◦ S, central

longitude 0◦W; origin at the South Pole) at a 1 km resolu-

tion and then averaged over a 20 km grid. The a priori error

used in the modelling framework was thus the standard de-

viation of the trends within each 20 km grid box. The En-

visat mission data began in September 2002 and ended in

April 2012. Compared to laser altimetry, radar altimetry is,

in general, less suited for measurements over ice for sev-

eral well-known reasons: the large spatial footprint, the rel-

atively poor performance in steeper-sloping marginal areas

(Thomas et al., 2008), and the variable snowpack radar pen-

etration (Davis, 1996). Envisat data exhibit better temporal

and spatial coverage over much of the WAIS, primarily be-

cause of the instrument issues associated with ICESat that

resulted in a shorter repeat cycle and less frequent operation

than originally planned. We use along-track dh/ dt trends

which were obtained by binning all points within a 500 m

radius and then fitting a 10-parameter least-squares model in

order to simultaneously correct for across-track topography,

changes in snowpack properties, and dh/ dt (Flament et al.,

2012). The re-trended residuals were then used to obtain lin-

ear trends over the 2003–2009 ICESat period for our study.

As with ICESat, the data were averaged over a 20 km grid

and the standard deviation of the trends were used as the er-

ror at this scale.

2.2 GRACE

The Gravity Recovery and Climate Experiment (Tapley et

al., 2005) has provided temporally continuous gravity field

data since 2002. Different methods have been used to pro-

vide mass-change anomalies from the Level 1 data. Most

are based on the expansion of the Earth’s gravity field into

spherical harmonics; however, to make the data usable for

ice mass-change estimates, it is generally necessary to em-

ploy further processing methods. These include the use of

averaging kernels (Velicogna et al., 2006), inverse modelling

(Wouters et al., 2008; Sasgen et al., 2013), and mass concen-

tration (mascon) approaches (Luthcke et al., 2008). Spher-

ical harmonic solutions usually depend on filtering to re-

move stripes caused by correlated errors (Kusche et al., 2009;

Werth et al., 2009).

In this paper, we used a mascon approach (Luthcke et al.,

2013), although we stress that the framework is not lim-

ited to this class of solutions. The mascon approach em-

ployed here uses the GRACE K-band inter-satellite range-

rate (KBRR) data which are then binned and regularised us-

ing smoothness constraints. The fourth release (RL4) of the

atmosphere/ocean model correction, which utilises the Eu-

ropean Centre for Medium-Range Weather Forecasts atmo-

spheric data and the Ocean Model for Circulation and Tides,

Figure 1. Error estimates for the GRACE mascon solutions, derived

from a regression of the data (Zammit-Mangion, et al., 2014).

was used (Dobslaw and Thomas, 2007). Some concerns with

this correction have been reported (Barletta et al., 2012),

but a release of the mascon data using the corrected ver-

sion (Dobslaw et al., 2013) was not available for this study.

Contributions to degree-one coefficients were provided us-

ing the approach by Swenson et al. (2008). Our mascon ap-

proach does not call for a replacement of C20 coefficients.

We assume that GRACE does not observe SMB or ice mass

changes over the floating ice shelves as they are in hydro-

static equilibrium. Hence, all observed gravity changes over

the ice shelves are assumed to be caused by GIA.

Although the mascons are provided at a resolution of about

110 km, their fundamental resolution is nearer to that of the

original KBRR data at about 300 km (Luthcke et al., 2013).

For the statistical framework, it is important to quantify the

correlation among the mascons so that it is taken into ac-

count when inferring both the processes and associated pos-

terior uncertainties. We quantify the spatial correlation by de-

termining an averaging model such that the diffused signal

is able to loosely reconstruct the mass loss obtained using

only altimetry (and assuming that all height change occurs at

the density of ice). The averaging strength between mascon

neighbours is also estimated during the inference (Zammit-

Mangion et al., 2014). The error on the mascon rates is as-

sumed to be a factor of the regression residuals on the trends,

in a similar manner to the altimeter data (Zammit-Mangion et

al., 2014). The a priori errors, after these two steps, are shown
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in Fig. 1, which also indicates the length scale over which we

estimated the GRACE mascons to be uncorrelated.

2.3 GPS

The GPS trends used in this work were taken from Thomas

and King (2011). Not all of the trends were suitable for our

analysis, as the length of record did not always coincide with

the 2003–2009 ICESat period. We only used stations with

contemporaneous data, as well as those where we could ac-

cess the original time series to confirm that the trend had re-

mained constant, within the error bounds, for our observation

period. For the northern Antarctic Peninsula, we followed

the approach suggested in Thomas and King (2011) and

used the pre-2003 trends, ignoring the later trend estimates,

which are strongly influenced by elastic signals. All other

stations were corrected for elastic rebound as in Thomas and

King (2011) and subsequently assumed to be measuring GIA

only (the published rates were used). A more advanced ap-

proach where the estimated ice loss is fed back into a dy-

namic estimate of the elastic rebound, is being implemented

for a spatiotemporal extension of the Bayesian framework.

The GPS data used in this study are detailed in Table 1.

2.4 Additional data sets

RACMO. Elements of the Regional Atmospheric Climate

Model version 2.1 (RACMO, Lenaerts et al., 2012) were

used to constrain SMB properties. Spatially varying length

scales describing the spatial smoothness of precipitation pat-

terns were obtained from the 2003–2009 SMB anomalies

(with respect to the 1979–2002 mean). These ranged from

80 km in the Antarctic Peninsula to 200 km east of Pine Is-

land Glacier. The amplitude of the anomalies, which peaked

at 50 mm water equivalent in the Antarctic Peninsula, was

used to provide an order of magnitude annual amplitude for

expected regional SMB variability (Zammit-Mangion et al.,

2014). RACMO2.1 also provides a surface density map: the

mean annual density of the surface layer. This was used to

translate height changes corresponding to the SMB field to

mass changes.

Firn correction. We used the firn correction anomalies for

2003–2009 (with respect to the 1979–2002 mean) from a firn

compaction model (Ligtenberg et al., 2011). These anoma-

lies were used to estimate, empirically, the correlation be-

tween firn compaction rate and SMB. This relationship was

then subsequently used to determine jointly the SMB and firn

correction processes, subject to the constraint that firn com-

paction is a linear function of SMB (supported by the high

correlation between the respective 2003 and 2009 trends).

The methodology automatically takes into account inflated

uncertainties due to confounding of these two processes since

they have identical length scales (Zammit-Mangion et al.,

2014).

Ice Velocities. We use surface ice velocities derived from

Interferometric Synthetic Aperture Radar data (Rignot et al.,

2011a). In places where no observational data were available,

estimated balance velocities were used (Bamber et al., 2000).

This composite velocity field was employed to help in the

separation of signals due to ice dynamics versus those due to

SMB (Sect. 3).

3 Methodology

Our framework makes use of several recent improvements

in statistical modelling which can be exploited for geo-

physical purposes. Complete details regarding the mathe-

matical methods employed are given in Zammit-Mangion

et al. (2014), and here we provide a conceptual overview

of the approach. A description of the software implemen-

tation can also be found in Zammit et al. (2015). The sta-

tistical framework hinges on the use of a hierarchical model

where the hierarchy consists of three layers: the observation

layer (which describes the relation of the observations to the

measured fields), the process layer (which contains prior be-

liefs of the fields using auxiliary data sets), and the parameter

layer (where prior beliefs over unknown parameters are de-

scribed).

The “observation model” is the probabilistic relationship

between the observed values and the height change of each of

the processes. For point-wise observations, such as altimetry

and GPS, the observations were assumed to be measuring the

height trend at a specific location. GRACE mascons, how-

ever, were assumed to represent integrated mass change over

a given area. These mass changes were translated into height

changes via density assumptions: upper mantle density was

fixed at 3800 kg m−3, ice density at 917 kg m−3, and SMB at

values ranging from 350 to 600 kg m−3. Note that we used

the density map from a regional climate model to specify the

density of the surface layer.

In the “process model”, four fields (or latent processes)

are modelled: ice dynamics, SMB, GIA, and a field which

combines the processes that result in height changes but no

mass changes, i.e. firn compaction and elastic rebound. We

model the height changes due to these as spatial Gaussian

processes, i.e. we assume that they can be fully characterised

by a mean function and a covariance function. For each field

we assume that the mean function is 0 (we do not use numer-

ical models to inform the overall mean) and that the covari-

ance function, which describes how points in space covary, is

highly informed by numerical models and expert knowledge

as described next. The relationship between the observations,

priors, and the latent process, defined by the process model,

is shown schematically in Fig. 2. Those processes that are

influenced by an observation are linked by a solid arrow and

it is evident that the problem is underdetermined as there are

less independent observations than there are latent processes.

This is why the use of priors is important to improve source
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Table 1. GPS stations with vertical rate and errors, modelled elastic correction, and adjusted rates. The latter are used for inference.

Site name Lat Long Start Start End End data GPS Sigma Modelled Adjusted

year day of year day of days rate elastic GPS

year year (mm yr−1)

ABOA −73.04 346.59 2003 31 2010 11 1959 1.4 0.84 0.27 1.13

BELG −77.86 325.38 1998 33 2005 45 1517 2.97 1.47 0.02 2.95

BREN −72.67 296.97 2006 362 2010 194 463 3.85 1.6 1.85 2

FOS1 −71.31 291.68 1995 35 2010 364 317 2.14 0.4 1.64 0.5

MBL1_AV −78.03 204.98 3.28 1.09 0.28 3

OHIG −63.32 302.1 1995 69 2002 48 1667 3.8 1 NULL 3.8

PALM −64.78 295.95 1998 188 2002 59 1181 0.08 1.87 NULL 0.08

ROTB −67.57 291.87 1999 54 2002 59 239 1.5 1.9 NULL 1.5

SMRT −68.12 292.9 1999 112 2002 59 751 −0.22 1.93 NULL −0.22

SVEA −74.58 348.78 2004 317 2008 20 1030 2.07 1.95 0.24 1.83

VESL −71.67 357.16 1998 212 2010 328 3081 1.06 0.45 0.25 0.81

W01_AV −87.42 210.57 −2.8 1.17 −0.09 −2.71

W02_AV −85.61 291.45 2.17 1 0.28 1.89

W03_AV −81.58 331.6 −2.47 1.28 −1.73 −0.74

W04_AV −82.86 306.8 3.42 0.84 0.16 3.26

W04B/CRDI −82.86 306.8 2002 358 2008 24 16 4.06 1.32 0.16 3.9

W06A −79.63 268.72 2002 356 2005 358 12 −2.2 2.42 1.53 −3.73

W07_AV −80.32 278.57 3.61 1.58 0.97 2.64

W09 −82.68 255.61 2003 9 2006 8 34 4.54 2.59 0.49 4.05

W12A/PATN −78.03 204.98 2003 331 2007 363 17 6.41 1.61 0.28 6.13

W08A/B/SUGG −75.28 287.82 2003 3 2006 4 13 1.31 1.28 1.3 0.01

Table 2. Prior information and soft constraints applied to length scales and amplitudes based on expert judgement and analysis of the forward

models discussed in Sect. 2.4.

Process Length scale Softly constrained Dependency

amplitude (1sigma)

GIA 3000 km 5mm yr−1 Independent

Ice dynamics 50 km 1 mm yr−1 in interior

– 15m yr−1 in areas

flowing faster than

∼ 15 m yr−1

Independent

Firn

compaction

80 km at coast –

200 km at

interior

1 mm yr−1 in interior –

140 mm yr−1 at coast

Anti-correlated

with SMB

(rho = -0.4)

SMB 80 km at coast –

200 km at

interior

1 mm yr−1 in interior –

240 mm yr−1 at coast

Anti-correlated

with firn

compaction

(rho=−0.4)

separation (i.e. for partitioning elevation change between the

four latent processes shown in Fig. 2). It should also be noted

that SMB and firn compaction have been assumed, in this

implementation of the framework, to covary a priori, as dis-

cussed later.

The practical spatial range of surface processes – this de-

scribes the distance beyond which the correlation drops to

under 10 % – was estimated from RACMO2.1 as described

in Sect. 2.4. This analysis revealed, for example, that lo-

cations at 100 km are virtually uncorrelated in the Antarc-

tic Peninsula but highly correlated inland from Thwaites

Glacier. Similarly, GIA was found to have a large practical

range (∼ 3000 km) from an analysis of the IJ05-R1 model

(although version R2 is used for comparison in the results

and discussion) (Ivins et al., 2013). These length scales im-

pose soft constraints on the possible class of solutions for
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Figure 2. Schematic diagram showing the relationship between the

observations, the process model defining the latent processes, and

the priors employed.

the individual fields. They are useful for helping to parti-

tion a height change between the different processes that can

cause that change. For example, a long wavelength variation

in height that spans different basins is likely associated with

SMB, whereas a localised change that shows some relation-

ship to surface velocity is likely associated with ice dynamics

(Hurkmans et al., 2014). Hence, mass loss due to ice dynam-

ics was assumed to mostly take place in areas of faster flow

(Hurkmans et al., 2014). A “soft” constraint was thus placed

on elevation rates due to ice dynamics such that it is small

(1 mm yr−1) in areas of low velocities and can be large (up to

15 m yr−1) for velocities greater than 10 m yr−1. A sigmoid

function was used to describe this soft constraint:

σvel (s)=
15

1+ exp(−(v (s)− 10))
, (2)

where v(s) denotes the horizontal velocity at location s. For

illustration of how σvel (s) is used, an altimetry elevation

trend of 10 m yr−1 in Pine Island Glacier where velocities ex-

ceed 4 km yr−1 is within the 1σvel interval and thus classified

as “probable”. However, a 10 m yr−1 trend in a region east

of Thwaites, where velocities are 2 m yr−1, would lie within

the 2000σvel level and thus assumed to be a virtually impos-

sible occurrence a priori. At Kamb Ice Stream, this assump-

tion had to be relaxed as this area shows thickening from the

shutdown of the ice stream about 150 years ago (Retzlaff and

Bentley, 1993). Although the velocity of the ice is low, the

thickening occurs at relatively high rates. To reflect this, we

fix σvel (s)= 2 m yr−1 in this drainage basin. In Table 2, we

outline the key length scale and amplitude constraints placed

on the fields that are solved for in the framework. These soft

constraints should be seen as ones characterising the solution

in the absence of strong evidence to anything else. They can

be “violated” when the data are sufficiently informative. In

the Discussion we examine the sensitivity of the solution to

these constraints.

Length scales and prior soft constraints are easily defined

for Gaussian processes (or Gaussian fields) which nonethe-

less on the other hand, are also computationally challeng-

ing to use. Gaussian fields can however be re-expressed as

Gaussian–Markov random fields by recognising that Gaus-

sian fields are in fact solutions to a class of Stochastic partial

differential equations (SPDEs, Lindgren et al., 2011). Nu-

merical methods for partial differential equations, namely fi-

nite element methods, can thus be applied to the SPDEs in

order to obtain a computationally efficient formulation of a

complex statistical problem (Zammit-Mangion et al., 2014).

Spatially varying triangulations (meshes) are used for the dif-

ferent processes reflecting the assumption that, for example,

ice loss is more likely to occur at smaller scales near the mar-

gins of the Ice Sheet where fast, narrow ice streams are more

prevalent than in the interior. We thus use a fine mesh at the

margins (25 km) and a coarse mesh in the interior for this

field. GIA, however, is assumed to be smooth. This allows us

to use a relatively coarse mesh for this process (∼ 100 km).

We note that our methodology differs from others in that it

is not an unweighted average of estimates with markedly dif-

ferent errors (Shepherd et al., 2012) or a sum of corrected

data sources (Riva et al., 2009) but a process-based esti-

mate. For each of the four fields (noting that elastic rebound

and firn compaction covary in this implementation), we in-

fer a probability distribution and standard deviation for every

point in space. By relating pre-inference and post-inference

variances, it is possible to assess the influence of different

kinds of observation at each point on the resulting fields.

4 Results

Inferential results are available for the four processes shown

in Fig. 2 in isolation. In this section we report the results for

each of the processes in turn but emphasise that these are

presented to demonstrate the methodology rather than pro-

vide final estimates. This is because, as stated in Sect. 2, im-

provements are planned both to the framework and the data

sets that we use in it. In all the examples shown, green stip-

pling indicates where the signal is greater than the marginal

standard deviation.

Ice dynamics. We obtain an ice dynamics imbalance

of −86.25± 16.12 Gt yr−1. The results for ice dynamics

(Fig. 3) are consistent with prior knowledge of disequilib-

ria in ice flow in the West Antarctic Ice Sheet: for example,

the ice build-up in the Kamb Ice Stream catchment (Retzlaff

and Bentley, 1993) and the drawdowns in the Amundsen Sea

Embayment (Flament et al., 2012). The strength of the ap-

proach is apparent when focusing on the Antarctic Penin-

sula. Due to the relatively narrow, steep terrain and northern

latitude (which affects the across track spacing of the altime-

try), satellite altimeter data are sparse, while GRACE data

are influenced by leakage effects, making it challenging to

localise the mass sources and sinks. We find that the frame-
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Figure 3. (a) Ice dynamics for 2003–2009 in m yr−1. Stippled points denote areas in which the mean signal is larger than the marginal

standard deviation. (b) Marginal standard deviation of ice dynamics for 2003–2009 in m yr−1.

work places ice loss maxima at the outlets of several glaciers

and ice streams, which are known to have accelerated (De

Angelis and Skvarca, 2003). The result is a high-resolution

map of ice mass loss or gain that can be linked to specific

catchments. Strong ice loss can be observed on the North-

ern Peninsula at the Weddell Sea shore, at the former tribu-

taries of the Larsen B ice shelf. The maximum ice loss rate

is found in the area around Sjögren Glacier at −4.7 m yr−1.

Neighbouring Röhss Glacier, on James Ross Island, has been

thinning considerably since the break-up of the Prince Gus-

tav Ice Shelf (Glasser et al., 2011; Davies et al., 2011). This is

also reflected in high loss rates. Hektoria and Evans, Gregory

Glacier, and glaciers on the Philippi Rise also show strong

ice mass loss signals, most likely as a result of the collapse

of the Larsen B ice shelf (Scambos et al., 2004; Berthier et

al., 2012). Other ice loss maxima are found in the region

of the Wordie Ice Shelf, Marguerite Bay, and Loubet Coast,

which corroborates findings from USGS/BAS and ASTER

airborne stereo imagery analyses (Kunz et al., 2012). Ice loss

is also observed on King George Island, which is in agree-

ment with recent analyses of satellite SAR data (Osmanoğlu

et al., 2013), and on Joinville Island.

The gap in altimeter data around the pole results in spu-

rious estimates for that region, and the black shaded area

south of 86◦ in Fig. 3a is not considered here. As expected,

the marginal standard deviation, or error estimate (Fig. 3b),

is lowest in the interior of the WAIS, where sampling den-

sity by altimetry is high, and highest on the Peninsula, where

data are sparse. Also, steep coastal areas show larger errors,

reflecting the dependency of altimeter errors on slope (see

Bamber et al., 2005 or Brenner et al., 2007).

SMB and firn compaction. We obtain an SMB imbalance

of 10.57± 4.98 Gt yr−1. Figure 4a shows the trend of the

cumulative SMB anomalies according to RACMO 2.1, cal-

culated with respect to the 1979–2010 mean. This approx-

imately corresponds to the signal we are estimating, since

we are only considering trends with respect to a steady

state SMB. A cursory inspection of the anomalies we ob-

tain (Fig. 4b) with those from RACMO2.1 suggests relatively

poor agreement. It should be noted, however, that the anoma-

lies over the 7-year interval are on the order of a few cen-

timeters per year and only a limited area has a statistically

significant trend in our inversion (stippled regions in Fig. 4b).

There is a difference in sign between the model and our inver-

sion for the northern Antarctic Peninsula, but again the rates

we obtain are below a significant threshold and the Penin-

sula possesses larger uncertainties than other areas for both

our framework and the regional climate model. We compare

our results with ice core trends from Medley et al. (2013)

who conclude that, while in phase, RACMO2.1 appears to

show exaggerated inter-annual variability in the Amundsen

Sea Sector. The ice core trend labelled “MEDLEY” in Fig. 4

is the mean of three cores PIG2010, THWAITES2010, and

DIV2010 collected in 2010 and the location is, consequently,

the mean coordinates for all the cores. The trends at the sin-

gle ice cores were not listed, but there appears to be qual-

itative agreement with our negative trend in the area. Bur-

gener et al. (2013) also provide new ice core records for the

Amundsen Sea sector (Satellite Era Accumulation Traverse,

SEAT) and Fig. 4 also shows a comparison with their data.

Trends were taken over the full 2003–2009 period relative

to a mean for 1980–2009. The agreement is good for three

out of five cores published. Following Burgener et al. (2013),

we exclude SEAT 10-4 because of the high noise level in

the isotope dating and surface undulations. SEAT10-5 shows

a relatively strong negative trend that we do not reproduce.

SEAT-01, SEAT-03, and SEAT-06 agree well with our results

at the± cm yr−1 level. We note, however, that there is sub-

stantial short-wavelength spatial variability in SMB based on

the ice core data, which is below the resolution of our frame-
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Figure 4. (a) The SMB trend for 2003–2009 as obtained from RACMO. Contour lines (shown from −1000 to 1000 km Northing) are

elevations from BEDMAP surface (Fretwell et al., 2013). Mean ice core accumulation rates from Medley et al. (2013) (denoted MEDLEY)

and ice core accumulation rates from Burgener et al. (2013) (denoted SEAT). Rectangle shows area in close-up (Fig. 5). (b) SMB rates for

2003–2009 in m yr−1 and locations of the ice cores from Burgener et al. (2013) and Medley et al. (2013). Contour lines are elevations from

the BEDMAP surface (Fretwell et al., 2013). Stippled points denote areas in which the mean signal is larger than the marginal standard

deviation.
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Figure 5. Height changes from firn compaction and elastic uplift of

the crust for 2003–2009 in m yr−1. Stippled points denote areas in

which the mean signal is larger than the marginal standard devia-

tion.

work. This also suggests that a single ice core measurement

should be treated with caution in this type of comparison.

Height changes from firn compaction and elastic rebound

are estimated together in a single field. Because they take

place on similar length scales, and there is no temporal evo-

lution in our time-invariant solution presented here, they are

confounded in this study. Since firn compaction occurs at rel-

atively large rates (cm yr−1), we cannot make any useful in-

ferences about elastic rebound rates. This issue will be less

critical in the time-evolving version of the framework. The

modelled inverse correlation between firn compaction and

SMB (Sect. 2.4) is visible in the results (Figs. 4b and 5).

GIA. We obtain a GIA rate that is equivalent to a mass

trend of 12.34± 4.32 Gt yr−1. It is difficult to compare this

directly with other published results because the domain is

not the same. We can, however, examine individual basins.

The GIA vertical velocities estimated by our framework are

lower than some older forward model solutions (e.g. Peltier,

2004; Ivins and James, 2005). Our results, however, agree

well with a recent GRACE-derived estimate, AGE-1, which

also assumes that over the ice shelves, GIA is the sole process

causing observed mass change (Sasgen et al., 2013). Com-

pared with AGE-I, our maxima in vertical uplift are shifted

towards the open ocean for both of the major ice shelves

(Fig. 6a). Agreement with the trends at most GPS stations

is reasonable; however, the imposed smoothness constraints

have a larger influence. The W06A station (Table 1), which

has a strong negative trend with a large error, exacerbated by

a large elastic signal, stands out. Thomas and King (2011)

show that its rate does not fit with any of the GIA mod-

els used in their comparison. The signal is effectively ig-

nored in our framework due to the large spatial scale as-

sumed for the GIA process. Figure 6b shows the standard

deviation of our GIA estimate and it is evident that, where
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Figure 6. (a) GIA estimate with GPS stations and their rates. Stippled points denote areas in which the mean signal is larger than the marginal

standard deviation. (b) GIA error estimate (1 standard deviation).

Table 3. Ice and SMB mass trends from RATES, Sasgen et al. (2013), and King et al. (2012) in Gt yr. ∗ Our basin 25 is equal to the sum of

basins 25 and 26 in King et al. (2012). The sum of our basins 1 and 24 is equal to their sum of basins 1, 24, and 27.

Basin RATES Sasgen (2013) King (2012) Diff RATES- Diff RATES-

March 2009– March 2009– 2002–2010 Sasgen King

October 2009 October 2009

1 7.6 11 – −3.4 –

18 16.2 9.5 19.2 6.7 −3

19 −2.2 10 −4 −12.2 1.8

20 −12.2 −23 −23 10.8 10.8

21 −49.5 −46 −54 −3.5 4.5

22 −27.6 −24 −24 −3.6 −3.6

23 2.7 −11 −7 13.7 9.7

24 13.6 12 – 1.6 –

25 (25+ 26)∗ −24.1 −25 −33 0.9 8.9

(1+ 24+ 27)∗ 21.2 23 8.5 −1.8 12.7

WAIS −75.5 −86.5 −117.3 9.2 41.8

robust GPS data exist, the errors are substantially reduced

locally. Comparing our results, basin by basin, with other re-

cent GIA estimates including two forward models (W12a,

Whitehouse et al., 2012, and IJ05-R2 Ivins et al., 2013) and

two data-driven solutions (Gunter et al., 2014, and AGE-1

Sasgen et al., 2013) we find that we have, in general, best

agreement with AGE-1. Basin definitions are shown in Fig. 7.

Both Gunter et al. and AGE-1 rely on GRACE data. W12a,

while a forward model, was adjusted to better match GPS

uplift rates on the Peninsula. For the Filchner Ronne Ice

Shelf (basin 1), the AGE-1 estimate (2.1 mm yr−1) is slightly

lower than ours (2.7 mm yr−1), while IJ05-2 is slightly higher

(3.5 mm yr−1). W12a (7.2 mm yr−1) shows more than twice

our rate in this area, while Gunter et al. (4.2 mm yr−1) lies be-

tween IJ05-R2 and W12a. At the Ross Ice Shelf (basin 18),

the agreement with AGE−1 and IJ05-R2 (both 1.9, RATES

2.0 mm yr−1) is very close. Gunter et al. (3.1 mm yr−1) and

W12a (3.4 mm yr−1) are slightly higher. For basin 19, again

the agreement with AGE-1 and IJ05-R2 is close with RATES

at 2, AGE-1 at 1.7, and IJ05-R2 at 1.9 mm yr−1.

Basin 23, which connects the ASE to the Southern Penin-

sula, also yields a small uplift rate (0.4 mm yr−1). AGE-

1 (0. 5mm yr−1) lies within the error estimate, with IJ05-

R2 (1.7 mm yr−1) and Gunter et al. (2.0 mm yr−1) just

outside and W12a considerably higher at 5 mm yr−1. On

the Southern Peninsula (basin 24), agreement with AGE-1

(1.2 mm yr−1, RATES 1.3 mm yr−1) is very good, but W12a

is close (1.8 mm yr−1). Gunter et al. and IJ05 both show up-

lift on the Southern Peninsula but at a higher rate of 2.4 and

3.1 mm yr−1 respectively. On the Northern Peninsula, again

the agreement is best with AGE-1 (0.8, RATES 0.7 mm yr−1)

followed by IJ05-R2 (0.5 mm yr−1). The W12a rate is higher
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Figure 7. Basin definitions used for West Antarctica (adapted from

Sasgen et al., 2013).

Figure 8. Combined Ice and SMB loss trends for West Antarctica

using RATES (pink), results from King et al. (2013) (blue), and

results from Sasgen et al. (2013) (green). Basin definitions for King

et al. (2012) differ for basins 1 and 24, so they are given in Table 3

instead. Our basin 25 is equal to the sum of basins 25 and 26 in King

et al. (2012); this is given here as basin 25 for the King estimate.

at 1.7 mm yr−1. Gunter et al. is the only model that shows

a negative GIA trend (−0.70 mm yr−1) in this region. This

comparison is designed to be illustrative rather than defini-

tive as our final GIA solution from the time-evolving frame-

work for the whole of Antarctica will contain several im-

provements related to both the data and the methodology.

Specifically, we will improve and extend GPS time series and

coverage, use a new GRACE mascon solution, solve directly

Solution for SMB=0.2 m/yr

Solution for SMB=0.22 m/yr

Figure 9. Toy example illustrating the sensitivity of combina-

tion methods to differing SMB estimates. The blue lines repre-

sent the set of equations that solve for ice loss and GIA when

SMB= 0.2 m yr−1. The green lines represent the equations for

SMB= 0.22 m yr−1.

for elastic deformation, and include a spatially varying length

scale.

5 Discussion

In Fig. 8 and Table 3 we present the basin-scale combined

ice and SMB mass balance in comparison with two recent

studies using GRACE (King et al., 2012; Sasgen et al., 2013).

The latter study spans the ICESat period and the rates were

taken from the publication. The former study, however, spans

the 2002–2010 period. Basin definitions are the same as those

in Sasgen et al. (2013) but differ from King et al. (2012): the

sum of our basins 1 and 24 match the sum of their basins 1,

24, and 27. Our basin 25 matches the sum of their basins 25

and 26. Consequently, comparisons for these basins are not

shown in Fig. 8 but provided in Table 3.

Overall, we obtain good agreement with Sasgen et

al. (2013). Our mean time-averaged ice loss rate of

−76± 15 Gt yr−1 deviates by less than 1 standard deviation

from the value of −87± 10 Gt yr−1 obtained by Sasgen et

al. (2013). Agreement at the basin scale is also good. For

Basin 18, our error estimates are inflated because of the pole

gap in the altimetry data. The largest differences occur in

basins 19, 20, and 23. For 19 and 20, agreement is very

good when comparing the sums of the two adjacent basins

– suggesting that leakage effects might be affecting the abil-

ity of a GRACE-only solution to fully isolate the signal to

each basin. For basin 23, the altimetry – both Envisat and
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ICESat – show a clear positive trend in this area (ICESat:

+4 Gt yr−1), with only very localised ice loss signals on

Ferrigno ice stream. This positive trend (as opposed to a

negative trend from GRACE) reduces the ice loss estimate

and causes the difference between the two estimates. The

strong GRACE mass loss signal for the Amundsen Sea sector

leads to increased leakage in the coastal basins. The King et

al. (2012) result shows basins 23 and 21 are strongly corre-

lated at p = 0.96. When comparing the sum over the coastal

basins 21, 22, and 23, the difference between the Sasgen et

al. (2013) estimate (−80 Gt yr−1) and ours (−74 Gt yr−1) re-

duces to 6 Gt yr−1.

We also compare our basin-scale results to ice loss rates

from King et al. (2012). Here, the observation periods are

not identical, and the GIA estimates differ. Still, there is gen-

erally good agreement at the basin scale, in particular, where

their GIA estimates (Whitehouse et al., 2012) lie within our

error ranges (basins 18, 19); the agreement is worst where

their GIA uplift rate is a multiple of ours (sum of basins 1

and 24). Overall, their ice loss rate of −118± 9 Gt yr−1 is

significantly higher than ours.

Integrated over the domain studied, our loss estimate is

smaller than other recent estimates: Shepherd et al. (2012)

arrive at−97± 20 Gt yr−1 for WAIS over the ICESat period;

while Gunter et al. (2014) obtain −105± 22 Gt yr−1. With

regards to Shepherd et al. (2012) and other altimetry-based

results, the discrepancy is partly explained by our estimate

of a negative SMB anomaly in the ASE, while RACMO2.1

gives a positive trend in this region (Fig. 4a). Methodologies

employing RACMO2.1 will, thus, attribute a greater loss (for

a given height change) to ice dynamics. Since these losses

occur at a higher density than SMB, the inferred mass loss

is greater. With regards to Gunter et al. (2014), the discrep-

ancy arises from the different GIA rates used in the ASE. One

cause for this might be the different GRACE solutions used.

Our GRACE data set (Luthcke et al., 2013) is equivalent to a

RL04 GRACE solution and uses the same anti-aliasing prod-

ucts. In Gunter et al. (2014), RL05 GRACE solutions ap-

pear to yield higher overall mass loss estimates. Preliminary

comparisons of new (RL05) mascon solutions with the RL04

ones appear to show, however, little impact on the trends.

The results for SMB are more challenging to interpret be-

cause the trend, over this time period, is relatively small (a

few cm yr−1) and below 1 standard deviation for most of the

domain (Fig. 4b). There is, however, some agreement with

new in situ data from ice cores (Medley et al., 2013; Burgener

et al., 2013). It should be remarked that in the ASE, where we

also observe an ice loss maximum, the statistical framework

might have difficulty in partitioning SMB and ice dynamics.

The reason for this is that the density of the SMB changes

tends to be higher at the coast, with higher temperatures and

melt rates. Some of the large, negative trends seen in the ASE

could thus be falsely attributed to SMB. This could be reme-

died in principle by including more information on the spa-

tial patterns of SMB into our framework by using, for exam-

ple, a more informative prior. Also, it should be noted that

the uncertainties on our SMB rates, although low on a basin

scale, are comparatively high on a small spatial scale. These

issues will become less critical in a time-evolving solution

because ice dynamics and SMB have very different temporal

frequencies: the former tends to vary smoothly in time, while

the latter has relatively large high-frequency variability. This

important difference in temporal smoothness will elicit sig-

nificant improvement in source separation.

Methods that combine altimetry and gravimetry such as

Gunter et al. (2014) and also the framework presented here

are sensitive to the SMB anomaly used. We illustrate this

sensitivity through a simple calculation. Let the unobserved

processes on a 1 m2 unit area be as follows: SMB amounts

to 0.2 m yr−1 at 350 kg m3 density, GIA is 1 mm yr−1 at

3500 kg m3, and ice loss is −1.0 m yr−1 at 917 kg m3. This

amounts to an observed height change of −0.799 m yr−1.

The observed mass change is −897.5 kg yr−1 over the unit

area. We now try to explain these signals by taking into

account GRACE and altimetry but erroneously assume a

SMB rate that is 10 % too high at 0.22,m yr−1 (amount-

ing to a positive mass change of 77 kg yr1). The remain-

ing mass signal that needs to be explained by ice and GIA

is now −974.5 kg yr−1. The unexplained height change is

−1.019 m. We arrive at two equations, one for height and

one for mass, that can be solved by finding the intersection

of the two lines (see Fig. 9). Solving the equations, we arrive

at an ice mass loss rate of −1.025 m yr−1 with a high, but

still plausible, GIA rate of 6 mm yr−1. Thus, in this example,

a 10 % difference in SMB can result in a GIA estimate that is

markedly higher (5 mm yr−1) than the truth. The resulting ice

mass difference would be in the range of −40 Gt yr−1 when

taken over the whole of West Antarctica. Naturally, this sen-

sitivity acts both ways, so an underestimate in SMB would

result in a lower GIA and less ice loss. In this context, both

GRACE filtering and the treatment of the ICESat trends also

play a major rôle. As the mass loss signal in West Antarc-

tica is relatively localised, with high rates of elevation change

confined to only a few percent of the area of a basin, the in-

clusion or exclusion of a single (informative) altimetry data

point can alter the spatial distribution of height change con-

siderably but the overall mass trend less, as this is constrained

by GRACE.

It is also worth examining the sensitivity of the solution

to the prior distributions that were derived from the forward

models, auxiliary data sets, such as surface ice velocity, and

expert knowledge. To do this, we changed the original am-

plitude and length-scale constraints as detailed in Table 4.

The table also lists the original mass trend (using constraints

detailed in Table 2) alongside the new estimates using the re-

vised constraints. Changes in the characteristic length scale

for GIA and SMB have a rather small effect on the integrated

mass trend. However, the velocity threshold that is used to

determine whether the signal is likely to be associated with

ice dynamics appears to have a significant effect for the three
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Table 4. Mass trend values for each basin shown in Fig. 8 for different values of the GIA length scale, SMB length scale, and ice surface

velocity threshold. All values in columns 2–4 are in Gt yr−1.

Basin Original GIA length SMB length scale Ice horizontal

number mass trend scale 1000 km from RACMO: velocity

150 km everywhere threshold 50 m yr−1

01 7.57± 1.41 7.49± 1.40 8.11± 1.36 5.40± 1.0

18 16.16± 13.26 13.48± 12.92 15.12± 13.05 24.80± 3.18

19 −2.24± 1.19 −2.23± 1.26 −2.18± 1.29 −0.71± 0.91

20 −12.22± 1.94 −11.47± 1.98 −12.28± 1.93 −13.21± 1.67

21 −49.48± 3.32 −45.31± 3.56 −49.53± 3.41 −47.01± 3.38

22 −27.62± 1.95 −26.34± 2.02 −27.34± 1.90 −24.12± 1.75

23 2.68± 2.65 3.28± 2.67 2.62± 2.65 −0.18± 2.59

24 13.57± 2.28 13.65± 2.30 13.39± 2.30 7.92± 1.67

25 −24.09± 3.39 −24.75± 3.20 −24.43± 3.42 −8.09± 1.90

basins that comprise the Antarctic Peninsula: 23, 24, 25. This

is because, for the Peninsula, observed and balance velocities

are missing in a number of places. Where this is the case,

they were set to 5 m yr−1. With a 50 m yr−1 soft threshold,

this means that an ice dynamics signal is extremely unlikely

in all locations with a missing velocity. Improving the veloc-

ity field in this area would, therefore, reduce this sensitivity.

The GIA estimates from our study agree well with a recent

GRACE-based estimate (Sasgen et al., 2013) and also com-

pare well with a recent forward model (Ivins et al., 2013).

Compared to AGE-1, the spatial pattern of our uplift max-

imum is shifted away from the Peninsula and towards the

Ronne Ice Shelf. The spatial pattern is closer to that of W12a

and ICE-5G models, with a bimodal uplift maximum cen-

tred underneath the Ronne and Ross Ice Shelves (Fig. 6a).

This spatial structure is likely to have resulted from the use

of GPS uplift rates, which were also used in the calibration

of the most recent forward models (Whitehouse et al., 2012;

Ivins et al., 2013). The W12a model yields slightly higher

estimates for most basins but shows good agreement on the

southern Antarctic Peninsula. Whitehouse et al. (2012) re-

mark that the uplift rates using the W12 de-glaciation his-

tory – which are already substantially lower than the ICE-

5G (Peltier, 2004) model rates – can be viewed as an upper

bound. Separating secular and present-day viscous and elas-

tic signals from the trends in this area remains a challenging

task and will be treated in greater detail in the spatiotemporal

version of our framework.

For this proof-of-concept study, our focus lies mainly on

ice dynamics, SMB, and GIA estimates, neglecting to a cer-

tain extent the influence of mass-invariant height changes

(due to firn compaction and elastic deformation of the

bedrock). At this stage, the framework solves for a single

process that combines both these processes. In this time-

invariant framework, the two are confounded and cannot be

separated, as they are not distinguishable by different densi-

ties or length scales. A better approach to solve for the elastic

rebound of the crust would be to integrate a dynamic estimate

that depends on the ice load changes. This approach is being

implemented in the spatiotemporal version of the framework.

Firn compaction is currently linked with SMB through a sim-

ple correlation model (Zammit-Mangion et al., 2014). This

approach could be further improved by adding a tempera-

ture dependence, along the lines of a simple firn compaction

model (Helsen et al., 2008). Finally, another open question

concerns the extent of present-day viscoelastic rebound in

the ASE.

6 Conclusions

Our proof-of-concept study shows that hierarchical mod-

elling is a powerful tool in separating ice mass balance, SMB,

and GIA processes when combining satellite altimetry, GPS,

and gravimetry. We demonstrate that, using only smoothness

criteria derived from forward models, it can provide an accu-

rate estimate of the different processes. A time-varying ver-

sion of the framework is currently being developed, which in-

cludes a number of improvements mentioned earlier. In par-

ticular, estimation of elastic rebound in the GPS time series,

and more robust partitioning of ice dynamics and SMB will

provide substantial improvements in source separation, error

reduction, and GIA estimation. A central advantage of the

framework is that new data – which need be neither regu-

lar or gridded – can be added at any point. For example, it

is possible to extend the observation period forward or back

in time using data from ERS-2, Cryosat2, or any other data

set that contains information about one of the processes be-

ing solved for. This could include, for example, accumulation

radar data or shallow ice cores for SMB variability or addi-

tional GPS sites as they become available. Preliminary tests

have shown that the inference can also be performed without

GRACE data.
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